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1. Introduction 

 Processes involving nonradiative transitions between electronic states are ubiquitous in 

chemistry—from spin-forbidden reactions in combustion to light harvesting in solar cells—and 

they occur via a variety of elementary chemical mechanisms, such as intersystem crossing, 

internal conversion, and nonadiabatic electron transfer. The term “non-Born–Oppenheimer” 

(NBO) may be generally applied to these processes to emphasize the idea that the Born–

Oppenheimer separation of the nuclear and electronic time scales breaks down and that potential 

energy surfaces other than the ground-electronic-state adiabatic potential energy surface play a 

role in the dynamics. A detailed understanding of NBO coupling of adiabatic electronic states 

and of the potential energy surfaces associated with them and the ability to predict the effect of 

this kind of coupling for real chemical systems remain significant challenges to current theories.  

One may begin to understand NBO dynamics1-6 in terms of features of the coupled 

potential energy surfaces, and in the past we have made the distinction between conical 

intersections (CIs) of adiabatic surfaces, avoided crossings (ACs) of adiabatic surfaces, and weak 

interactions (WIs)7,8 of adiabatic electronic states. 

The CIs are (F – 2)-dimensional hyperseams of degenerate pairs of potential energy 

surfaces9 where F is the number of internal nuclear degrees of freedom, which is 3N–6 for 

general polyatomics, where N is the number of atoms. (Sometimes more than two surfaces 

intersect,3,10 but this paragraph applies to the simplest case of two.) The surfaces form a double 

cone4,11 in the two nondegenerate degrees of freedom, and the CI provides an ultrafast decay 

route from the higher-energy state in the coupled pair to the lower-energy one. The prominent 

role of conical intersections in promoting such radiationless decay route was first emphasized by 

Teller;9 and was later used for mechanistic explanations of photochemical reactions.12-16 Until 

recently, though, the organic photochemical literature usually associated these decay routes with 
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avoided crossings and regions where potential surfaces approach closely but do not actually 

cross–such regions were called funnels or bifunnels, which are terms now usually applied to 

CIs.17,18 However, the older arguments9,19 that lead to a correct understanding of the 

dimensionality of avoided crossings also make it clear that the conical intersections are much 

more common than avoided crossings. Furthermore since the crossings have a high 

dimensionality, the seam of crossings can extend over a wide range of geometries, and this can 

make the dynamics more complicated than that of a reaction dominated by a localized saddle 

point region or other localized topographical feature of a potential energy surfaces or set of 

potential energy surfaces.21 The picturesque funnel language emphasizes the shape of the 

crossing in the two dimensions called the branching plane where the surfaces cross only at a 

point, but in many cases greater significance should be attached to the much larger number of 

dimensions in which the degeneracy is not broken. A picture describing how some coordinates 

break the degeneracy but others do not is an inverted cuspidal ridge rather than a funnel, or 

touching cuspidal ridges (an excited surface with ridge down and lower surface with ridge up, 

with the surfaces touching all along the ridges) rather than a bifunnel (a double cone, that is, a 

cone touching an inverted cone at a point). 

The ACs are locations of nonzero minima in the energy gap as a function of local motion 

and are almost always associated with nearby CIs, 20,22,23 although those CIs may be energetically 

inaccessible. The most noteworthy WIs are characterized by wide regions of weak coupling 

between nearly parallel potential surfaces. Unlike CIs, there is no rule to prevent regions of 

coupling due to ACs and WIs from occurring in dimensionalities higher than F – 2. Although the 

monograph in which this chapter appears focuses on CIs and their NBO dynamics, it is important 

to recognize that realistic potential energy surfaces featuring CIs contain chemically relevant 
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nearby regions of ACs and may also contain regions of significant WIs. The methods presented 

in this chapter are general enough to treat all these cases. 

 The presence of a CI is often inferred when ultrafast decay is observed experimentally, 

and the CI is treated as a critical configuration connecting photoexcited reactants to quenched 

products when constructing mechanistic reaction coordinate diagrams of photochemistry. One 

can make a rough analogy to a transition state, but the analogy is at best imperfect and sometimes 

even deceptive because there are important differences between a CI and an adiabatic transition 

state as well as differences in the energetic accessibility of other critical regions of the potential 

energy surface in typical non-BO processes as compared to the kind of reaction where transition 

state theory is most useful.21 Transition state dividing surfaces are of dimension F – 1, and valid 

transition state dividing surfaces are such that all of the reactive flux must cross through them. 

Due to the reduced dimensionality of CIs, on the other hand, only a vanishingly small fraction of 

electronically nonadiabatic flux passes through a CI at the zero-gap intersection. Furthermore, 

quantitative studies of electronically nonadiabatic systems often require dynamical treatments 

that are more global than conventional transition state theories, and modeling multistate 

dynamics occurring via CIs is likely to require global dynamical methods as well. These 

considerations have motivated the development of trajectory-based methods for simulating NBO 

chemistry. 

In NBO molecular dynamics, an ensemble of classical trajectories is used to model 

nuclear motions, electronic motion is treated quantum mechanically, and the nuclear and 

electronic subsystems are coupled according to semiclassical rules. Each trajectory in the 

ensemble may be thought of as representing a portion of a quantum mechanical wave packet, and 

taken together the evolution of the ensemble describes the flow of nuclear probability density 

over the coupled electronic surfaces. Alternatively, each trajectory in the ensemble may be 
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thought of as a distinct chemical event, with its coordinates and momenta subject to the inherent 

indeterminacy of quantum mechanics. 

NBO molecular dynamics is vulnerable to the same sources of error as conventional 

molecular dynamics, such as the errors associated with the neglect of tunneling through barriers, 

neglect of quantized vibrations and zero point energies, and neglect of coherences and 

resonances. NBO molecular dynamics is designed to incorporate one quantum mechanical effect 

into classical dynamics, namely that of the nonradiative electronic transitions. Accurate 

treatments of this quantum effect require consideration of tunneling and electronic coherence as 

well. 

A variety of NBO molecular dynamics methods have been proposed. Here we discuss 

NBO molecular dynamics generally and focus our attention on two implementations: the fewest-

switches with time uncertainty24 (FSTU) surface hopping25-27 method and the coherent switches 

with decay of mixing28 (CSDM) method, a modification of the mean-field29-31 formalism. The 

computational cost of these methods is close to that of conventional (i.e., electronically adiabatic) 

molecular dynamics, and the methods may be readily applied to study a wide variety of chemical 

processes in both small molecules and large ones.  

The dynamics of each trajectory in an FSTU or CSDM ensemble is independent of the 

others, and transitions between electronic states are allowed anywhere that the electronic surfaces 

are coupled. Other classes of semiclassical NBO dynamics methods, such as those involving 

propagating coupled swarms of trajectories,32-34 restricting hops to predetermined seams,25,26,35 

dressing classical trajectories with frozen Gaussians,36-40 etc., are not considered in detail, nor 

are fully quantal calculations.41-45 

The goal of this chapter is to describe in detail the latest implementations of the FSTU 

and CSDM methods, summarize the results of the tests used to validate and develop the methods, 
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and describe several recent applications. Trajectory-based methods such as FSTU and CSDM are 

well suited for mechanistic interpretation, and a brief discussion of this application is also given. 

 

2. Non-Born–Oppenheimer Molecular Dynamics 

2.1. Coupled Potential Energy Surfaces 

In the NBO molecular dynamics simulations described here, an ensemble of independent 

classical trajectories for nuclear motion is propagated under the influence of a small number of 

coupled electronic states. The electronic energies (including nuclear repulsion) of each electronic 

state i provide a potential energy surface Vi for nuclear motion. When representing coupled 

electronic surfaces, one has a choice of electronic wave functions. The adiabatic electronic wave 

functions ϕi and energies Vi (where i labels the electronic states) are solutions of the electronic 

Schrödinger equation 

 

€ 

H0ϕi = Viϕi , (1) 

where H0 contains the electronic kinetic energy and the Coulomb potential operators. When 

solving eq 1, the nuclear coordinates Q are treated parametrically, and Vi(Q) are the adiabatic 

potential energy surfaces.  

 The nuclear kinetic energy operator is written as 

  
  

€ 

Tn = −
h2

2M
∇n
2  (2) 

where 

€ 

∇n   is a 3N-dimensional gradient in the nuclear coordinates Q, which are scaled to 

common reduced mass M (for example, M could be 1 amu). The total wave function of the 

system is written 

  

€ 

Ψ =
i
∑ ϕ i q;Q( ) χ

i
Q( ) (3) 
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where q is the collection of electronic coordinates, and 

€ 

χ i  is a wave function for nuclear motion. 

 If eq 3 is used to solve the full molecular Schrödinger equation with the Hamiltonian H = 

Tn + H0, and if one neglects vibronic Coriolis coupling, one obtains a set of coupled equations 

for the nuclear motion1,4,46  

 
  

€ 

Tn +Vi −
h2

2M
Gii − E

 

 
 

 

 
 χ i = −

h2

2M
Fij ⋅ ∇n +

h2

2M
Gij

 

 
 

 

 
 

j≠ i
∑ χ j , (4) 

where M is the reduced mass of the system, 

€ 

Gii = ϕi ∇n
2 ϕi  are Born–Oppenheimer diagonal 

corrections47–50 (BODCs), 

€ 

Fij = ϕi ∇n ϕ j  are nonadiabatic coupling vectors, 

€ 

Gij = ϕi ∇n
2 ϕ j  

are 2nd-order nonadiabatic couplings, and Dirac’s brackets denote integration over the electronic 

variables. Although they are not necessarily negligible, Gii and Gij are often neglected, which is 

considered a semiclassical approximation, and this yields 

 
  

€ 

Tn +Vi − E( ) χ i = −
h2

2M
Fij ⋅ ∇n

j≠ i
∑ χ j . (5) 

Equation 5 is interpreted as coupling nuclear motion on the adiabatic surfaces Vi via the action of 

the nonadiabatic coupling vectors Fij. 

Diabatic electronic wave functions may be generally defined as any linear combination of 

the adiabatic ones,51,52 

 

€ 

ϕ j
d = dijϕi

i
∑ , (6) 

that, unlike the adiabatic states, do not diagonalize H0. Note that the dij are typically functions of 

Q. The particular linear combination is often chosen such that the resulting diabatic potential 

energy surfaces 

 

€ 

Wii = ϕi
d E0 ϕi

d  (7) 
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or diabatic states have some desirable property, such as smoothness. One may attempt to obtain 

to define a diabatic basis by minimizing the nonadiabatic coupling vectors; and the electronic 

basis where 

 

€ 

Fij
d ≡ ϕi

d ∇n ϕ j
d = 0  (8) 

for all i and j is called the strictly diabatic basis. For real systems, no such strictly diabatic basis 

generally exists unless an infinite number of electronic states are considered.53 The most useful 

diabatic states are those for which 

€ 

Fij
d  is small enough to neglect and where the infinities in 

€ 

Fij  

associated with conical intersections have been transformed away. Such useful diabatic 

representations can be defined with manageable numbers of electronic states (even with only 

two). In the discussion that follows, we use “diabatic” to refer to the artificial situation where eq 

8 is satisfied or to the more general situation where 

€ 

Fij
d is small and is neglected.  

 Some workers (including us at times) define the nonexistent set of diabatic states for 

which 

€ 

Fij
d vanishes identically as “strictly diabatic” and define the states where 

€ 

Fij
d is small or 

negligible as “quasidiabatic.” Here we use a simpler notation, which is also in common use, of 

just calling all such states “diabatic.” One should not think of “diabatic” as a synonym for “not 

adiabatic;” one could have states that are neither adiabatic nor diabatic. Such representations will 

be called “mixed.” 

Diabatic electronic wave functions are not eigenfunctions of H0, and in general 

 

€ 

Wij = ϕi
d E0 ϕ j

d ≠ 0    (9) 

for i ≠ j. If we write 

 

€ 

Ψ =
i
∑ ϕi

d q;Q( )χ i Q( ) (10) 

then the equation governing nuclear motion in the diabatic representation is 
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€ 

Tn +Wii − E( )χ i = Wij
j≠ i
∑ χ j  (11) 

where the off-diagonal matrix elements of the electronic Hamiltonian Wij couple the nuclear 

motion on the diabatic surfaces Wij, and we have taken advantage of the assumed negligibility of 

€ 

Fij
d . 

It is straightforward to employ a general electronic basis, where 

€ 

Fij
d  is not neglected and 

where 

€ 

Wij ≠ 0. This so-called mixed representation will not be explicitly considered, though the 

equations governing NBO dynamics in a mixed representation are straightforward extensions of 

the adiabatic and diabatic ones. 

Adiabatic energies and couplings are readily calculated from the diabatic potential energy 

matrix elements Wij and their gradients. The adiabatic energies Vi are the eigenvalues of the 

diabatic energy matrix W, and the variables dij introduced already in eq 6 are the elements of a 

matrix whose columns are the eigenvectors of W. The gradients of the adiabatic surfaces and the 

nonadiabatic couplings are 

 

€ 

∇nVi = dij
*dik∇nW jk

j,k
∑ , (12) 

 

€ 

Fij =

1
Vj −Vi

dik
* d jl∇nWkl

k,l
∑ i ≠ j( )

0 i = j( )

 

 

 
 

 

 
 

 (13) 

On the other hand, if one knows the adiabatic energies and couplings, one may obtain 

diabatic energies and couplings, but due to the non-uniqueness of the diabatic representation 

additional choices and approximations will be needed.54,55 Procedures have also been developed 

for obtaining diabatic states without calculating the nonadiabatic coupling vectors.56-60  
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Spin-orbit coupling and other perturbative terms in the molecular Hamiltonian have not 

yet been considered. These terms may be readily treated using the dynamical methods to be 

described here, with one principal complexity being the need for a more complicated notation. 

When spin-orbit coupling is the dominant dynamical coupling and spin-free coupling is to be 

neglected, the adiabatic surfaces discussed above (which diagonalize the spin-free Hamiltonian 

H0 and may be called valence-adiabatic states61) are often a convenient diabatic basis for the full 

Hamiltonian, e.g., a useful diabatic matrix for a spin-orbit-coupled two-state system might be 

 

€ 

V1 USO
USO V2

 

 
 

 

 
 , (14) 

where USO is the spin orbit coupling. The eigenvalues of eq 14 are the adiabatic potential energy 

surfaces for the full Hamiltonian including spin. It is equally straightforward to include both 

spin-free and spin-orbit coupling, as in a recent application to the photodissociation of HBr.62  

Throughout the rest of this chapter, it is assumed that global potential energy surfaces and 

their gradients and couplings are available or may be readily calculated for all the electronic 

states of interest in either the diabatic or the adiabatic representations. 

 

2.2. Efficient Integration of NBO Trajectories 

An NBO trajectory evolves independently from the other trajectories in the ensemble and 

according to classical equations of motion 

 

€ 

˙ P = −∇nV (Q)  (15) 

 

€ 

˙ Q = P /M  , (16) 

where P is the vector of associated mass-scaled nuclear momenta, and the over-dot indicates 

time-differentiation. The time-dependence of Q defines a path through configuration space, and 

when  is the ground state adiabatic potential energy surface, Q(t) is a conventional classical 
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trajectory. More general formulations of  are required to accurately model NBO nuclear-

electronic coupling, as will be described in detail in Secs. 3 and 4 for the FSTU and CSDM 

methods. 

 The electronic state of the system at any time along an NBO trajectory may be 

represented as an electronic state density matrix with elements ρij where the diagonal elements 

ρii are the electronic populations of states i and the off-diagonal elements ρij are coherences. The 

time evolution of the electronic density matrix ρij is obtained by solving semiclassical equations 

along each NBO trajectory; this is sometimes called the classical path approximation. This 

approach is equivalent to solving for the quantum dynamics of the electronic subsystem in a 

time-dependent field, which in the present context is created by the nuclear motion. The 

electronic wave function may be expanded in the adiabatic basis 

 

€ 

Φ = ciϕi
i
∑ , (17) 

where ci = ai + ibi are complex time-dependent expansion coefficients, and the electronic density 

matrix is defined by 

 

€ 

ρij = ci
*c j . (18) 

The evolution in time of Φ is obtained in this section by solving the time-dependent electronic 

Schrödinger equation 

 
  

€ 

ih
∂
∂t
Φ = H0Φ, (19) 

giving the classical path equation: 

 
  

€ 

˙ c i = −ih−1ciVi − c j
j
∑ ˙ Q ⋅Fij , (20) 

or, for the real and imaginary parts of ci, 
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€ 

˙ a i = h−1biVi − a j
j
∑ ˙ Q ⋅Fij , (21) 

 
  

€ 

˙ b i = −h−1aiVi − bj
j
∑ ˙ Q ⋅Fij , (22) 

where 

€ 

˙ ϕ i  was evaluated using the “chain rule”63  

 

€ 

˙ ϕ i = ˙ Q ⋅∇nϕi , (23) 

which is a semiclassical approximation. If a diabatic basis is used, 

 

€ 

Φ = ci
dϕi

d

i
∑ , (24) 

and 

 
  

€ 

˙ c i
d = −ih−1 c j

d

j
∑ Wij . (25) 

or 

 
  

€ 

˙ a i
d = h−1 bj

d

j
∑ Wij  (26) 

 
  

€ 

˙ b i
d = −h−1 a j

d

j
∑ Wij . (27) 

The time-dependence in eqs 20 and 25 contains an arbitrary phase factor that spins rapidly due to 

the action of Vi or Wii on 

€ 

˙ c i  or 

€ 

˙ c i
d . This phase is readily analytically removed to simplify 

integration of the electronic variables by writing 

 

€ 

ci = ˜ c i exp(−iθi )  (28) 

where 

 

€ 

θi = Vidt∫  (29) 

or 

 

€ 

ci
d = ˜ c i

d exp(−iθi
d )  (30) 

and 
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€ 

θi
d = Wii

ddt∫ . (31) 

These substitutions give 

 

€ 

˜ ˙ a i = − [cos(θ j −θi) ˜ a j + sin(θ j −θi) ˜ b j ] ˙ Q ⋅Fij
j≠ i
∑  (32) 

 

€ 

˜ ˙ b i = − [cos(θ j −θi) ˜ b j − sin(θ j −θi) ˜ a j ] ˙ Q ⋅Fij
j≠ i
∑  (33) 

and 

 

€ 

˜ ˙ a i
d = − [sin(θ j

d −θi
d ) ˜ a j

d − cos(θ j
d −θi

d ) ˜ b j
d ]Wij

j≠ i
∑  (34) 

 

€ 

˜ ˙ b i
d = − [sin(θ j

d −θi
d ) ˜ b j

d + cos(θ j
d −θi

d ) ˜ a j
d ]Wij

j≠ i
∑  . (35) 

 Equation 20 neglects vibronic Coriolis coupling, which is discussed elsewhere.3 In 

addition, it neglects electronic angular momentum. 

It is straightforward to write equations for the time-dependence of the elements of the 

electronic density matrix by differentiating eq 18 and using eqs 20 or 25: 

 
  

€ 

˙ ρ ij = ih−1(ρiiVii − ρ jjV jj ) + ρik ˙ Q ⋅Fik − ρkj ˙ Q ⋅Fkj
k
∑  (36) 

 
  

€ 

˙ ρ ij
d = −ih−1 ρik

dWik − ρkj
dWkj

k
∑ . (37) 

The off-diagonal elements of ρii are complex, and the real and imaginary parts must be integrated 

separately. The equations for the (real) electronic state populations may be further simplified 

 

€ 

˙ ρ ii = −2 Re(ρij ˙ Q ⋅Fik )
j≠ i
∑  (38) 

 
  

€ 

˙ ρ ii
d = 2h−1 Im(ρij

dWik )
j≠ i
∑ . (39) 
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 Quantum mechanical calculations without dynamical approximations and some NBO 

molecular dynamics methods are independent of the choice of electronic representation if no 

coupling terms are neglected. In general though, NBO simulations will be dependent on the 

choice of electronic representation, and both representations will be considered when the FSTU 

and CSDM methods are described in Secs 3 and 4. Propagating an NBO trajectory for a system 

with N electronic states requires integrating the nuclear equations of motion (eqs 15 and 16), as 

well as either the 2N real and imaginary parts of the adiabatic or diabatic electronic coefficients ci 

(eqs 32 and 33 or 34 and 35) and the N phases (eqs 29 or 31) or the N 2 unique real and imaginary 

elements of the adiabatic or diabatic electronic density matrix ρij (eqs 36 and 38 or 37 and 39). 

 Although eqs 5 and 11 coupled to eq 20, 25, 36, or 37 are derived from the accurate eqs 4 

and 19, the process of treating the nuclear equations of motion classically means that the 

quantum electronic subsystem is no longer explicitly coupled to a quantum mechanical 

environment. It is not correct to treat the electronic subsystem by eq 19 because it is not an 

isolated system; eq 19 is valid only for isolated systems. For subsystems coupled to a medium or 

environment, one must replace the time-dependent Schrödinger equation (eq 19) by a nonunitary 

Liouville-von Neumann equation.64-66 Here the system consists of the electronic degrees of 

freedom, and the medium consists of the nuclear degrees of freedom; the “nuclear degrees of 

freedom play the role of observers of the electronic degrees of freedom.” 66 The effects of the 

medium may be broadly described as decoherence.65-70 The effect of decoherence will be treated 

by a simple model71 in Sec 3 and by a more complete model8,28,65 in Sec 4. 

 

2.3. Initial Conditions for Photochemistry 

The ensemble of NBO trajectories is initiated with some distribution in coordinate and 

momentum space that is intended to simulate the width (or uncertainty) of a quantum mechanical 
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wave packet or of a single-energy slice through a wave packet. The type of reaction and/or 

experimental situation being modeled determines the specific prescription for the selection of the 

initial conditions for each trajectory in the ensemble, and the techniques developed for single 

surface reaction dynamics72-75 can be applied with minor modifications.  

In one typical experimental situation, a chemical system is photoexcited from a well-

characterized vibrational state of the ground electronic state to some excited target electronic 

state. A rigorous sampling scheme might involve calculating absorption cross sections76,77 for the 

transitions of interest and sampling from the resulting distribution of quantized vibrational states 

of the excited electronic state or states. For systems with more than a few atoms the approximate 

methods used to calculate the ground state and excited state energy levels and the 

photoabsoprtion cross sections are likely to have significant uncertainty and/or computational 

cost.  

A more efficient strategy for modeling this experimental situation and one that is likely 

suitable for NBO molecular dynamics of complex systems is as follows. One selects the initial 

nuclear coordinates and momenta from the ground-state wave function of interest using 

quasiclassical73,74 initial conditions and then instantaneously promotes the trajectory to the target 

excited state. This scheme is equivalent to the Franck principle78 (semiclassical analog of the 

Franck-Condon principle), and it corresponds to exciting the sampled ground state wave function 

with “white light” and will generally result in an ensemble of trajectories with a relatively wide 

range of total energies.  

An alternative to using quasiclassical initial conditions is to run a classical trajectory 

(often called molecular dynamics) on the ground-electronic state adiabatic surface and sample 

from that trajectory. This is done by several groups. One should note, however, that a purely 

classical trajectory does not retain the quantum distribution of zero point energy or thermal or 
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state-specific vibrational excitation energy in the various vibrational modes, except in the limit of 

vanishingly small vibrational motion. Therefore the quasiclassical initial conditions are preferred. 

If the NBO dynamics are expected to be sensitive to energetic thresholds, it may be more 

appropriate to restrict the range of total energies. An alternative approach is to excite only that 

slice of the ground-state ensemble with energy gaps between the ground and target electronic 

states equal to the simulated photon energy within some tolerance. This scheme produces an 

arbitrarily narrow range of total energies, but it also limits the sampled configuration space.  

When the initial conditions are selected from distributions associated with uncoupled 

regions of the potential energy surfaces, the electronic energies are independent of the choice of 

electronic representation and the initial electronic state may be assigned unambiguously. 

However, if an NBO simulation starts in a region where the initial electronic state is coupled to 

other electronic states, one has to choose both the initial electronic representation and the initial 

electronic state distribution. For example, it may be appropriate to compute initial distributions in 

the adiabatic representation. If the simulation is to be carried out in the diabatic representation, 

the initial adiabatic state i can be projected onto the diabatic states, with the initial diabatic state j 

selected with the weights 

€ 

dij
2 obtained from the adiabatic-to-diabatic transformation. 

Although quasiclassical initial conditions are quite reasonable for modeling excited 

vibrational states, they are qualitatively incorrect for ground vibrational states.79 Thus one 

reasonable strategy80 for photodissociation is to use Wigner distributions77 for vibrational modes 

with vibrational quantum number 0 and quasiclassical distributions for vibrational modes with 

quantum number greater than 0. Wigner distributions may also be more accurate than 

quasiclassical initial conditions for bimolecular collisions,81,82 but they are only accurate for a 

short time,83 and their higher quantum fidelity may be lost by the time the collision partners meet. 
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3. Fewest Switches with Time Uncertainty 

The dynamics methods presented here may be applied in either an adiabatic or a diabatic 

representation. The results of accurate quantum mechanical calculations and some NBO 

molecular dynamics calculations are independent of the choice of electronic representation. In 

general, however, as already mentioned in Sec 2.2, surface hopping and decay of mixing NBO 

molecular dynamics simulations carried out using the adiabatic representation will produce 

different results from those employing diabatic representations. When the equations governing 

the NBO molecular dynamics methods depend on the choice of electronic representation, two 

equations will be given with the equation numbers appended with “a” and “d” for the adiabatic 

and diabatic representations, respectively.  

Trajectory surface hopping was first employed by Bjerre and Nikitin.25 Shortly thereafter 

it was presented in more generality by Preston and Tully.26 The generalization to allow hopping 

at any location was first turned into a general algorithm by Blais and Truhlar,27 as discussed in 

the excellent review of Chapman.84 Then Tully improved this procedure by introducing the 

fewest switches algorithm.63 The method we will present below differs from the original fewest 

switches algorithm in three ways: (i) the introduction of time uncertainty,24 leading to the FSTU 

method, (ii) the use of a grad V algorithm,85 and (iii) the introduction of stochastic decay71,86 

(SD). The SD modification in the FSTU/SD method is similar to the method recently employed 

by Granucci and Persico.70 These three enhancements to the method are explained in detail 

below. 

In a surface hopping simulation, such as an FSTU simulation, trajectories are propagated 

under the influence of a single adiabatic or diabatic electronic surface which, for electronic state 

K, is given by 

 

€ 

V = VK  (40a) 
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€ 

V = WKK  , (40d) 

but this propagation is interrupted by instantaneous surface switches, i.e., the state label K in eq 

40, which denotes the currently occupied electronic state, changes at certain points along the 

trajectory. A change in K is called a surface hop, and at a hopping event the trajectory is 

instantaneously placed on a different potential energy surface. In general, the potential energy 

€ 

V  

will change discontinuously at a surface hop, and the kinetic energy is adjusted such that total 

energy and total nuclear angular momentum are conserved. (Electronic angular momentum is 

neglected.) The nuclear momenta after the hop P' from surface K to surface K ' are given by 

 

€ 

′ P = P − P ⋅ ˆ h K ′ K 1− 1− ΔK ′ K / TK ′ K ( )ˆ h K ′ K  (41) 

where 

€ 

ˆ h K ′ K  is a unit vector called the hopping vector,  

 

€ 

ΔK ′ K = V ′ K −VK  (42a) 

 

€ 

ΔK ′ K = W ′ K ′ K −WKK  (42d) 

and  

 

€ 

TK ′ K = 1
2 (P ⋅ ˆ h K ′ K )2  (43) 

is the nuclear kinetic energy associated with 

€ 

ˆ h K ′ K . The hopping vector determines the 

component of the nuclear momentum that is adjusted during a hop, and theoretical arguments26,87 

confirmed by numerical tests42 show that a good choice is  

 

€ 

ˆ h K ′ K = FK ′ K / FK ′ K . (44a) 

Because 

€ 

FK ′ K  is a vector of internal coordinates, the adjustment in eq 41 with the choice of eq 

44a conserves total angular momentum.  

Using the nonadiabatic coupling vector as the hopping vector has been shown to provide 

accurate results for surface hopping calculations carried out in both the adiabatic and diabatic 

representations.42 If the diabatic representation is used, 

€ 

FK ′ K  can be calculated directly from eq 



 19 

13 for a two-state system. When more than two states are involved, FKK' should not be used 

because the adiabatic and diabatic state labels do not generally correlate to a globally consistent 

pair of states. Instead, the hopping vector in the diabatic representation can be approximated as 

 

€ 

ˆ h K ′ K = FK ′ K 
r / FK ′ K 

r , (44d) 

where 

€ 

FK ′ K 
r  is the reduced nonadiabatic coupling for the submatrix 

 

€ 

W r =
WKK WK ′ K 
W ′ K K W ′ K ′ K 

 

 
 

 

 
 , (45) 

i.e., 

 

€ 

FK ′ K 
r =

dKK
r,* d ′ K K

r ∇nWKK + (dKK
r,* d ′ K ′ K 

r + dK ′ K 
r,* d ′ K K

r )∇nWK ′ K + dK ′ K 
r,* d ′ K ′ K 

r ∇nW ′ K ′ K 
W+ −W−

, (46) 

and W+ and W– are the eigenvalues, and 

€ 

dK ′ K 
r  are the elements of matrices whose columns are 

the eigenvectors of Wr defined by eq 45. 

 Equation 41 cannot be solved if the radicand is negative, i.e., if the kinetic energy 

associated with the hopping vector is less than the required energy adjustment and the hop is an 

upward hop. (For downward hops,  and eq 41 can always be solved.) When , 

the hop is declared “frustrated,” and additional considerations are required, as discussed in detail 

below. 

In early examples of trajectory surface hopping, hops were allowed only when a 

trajectory crossed a seam where WKK crosses another diabatic surface,25,26 but in later work27,63 

this was generalized so that stochastic hopping events may occur after each integration step Δt 

and anywhere along the trajectory where the currently occupied surface is coupled to one or more 

other surfaces. Tully provided an elegant and useful formulation63 for the probability for hopping 

from the currently occupied electronic state K to some other state K' 
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€ 

PK ′ K (t + Δt) =max − d ′ t bK ′ K ( ′ t )
′ t = t

t +Δt

∫ /ρKK (t)

0

 

 
 

  
, (47) 

where 

 

€ 

bK ′ K = −2Re(ρK ′ K 
˙ Q ⋅FK ′ K ) (48a) 

   

€ 

bK ′ K = 2h−1 Im(ρK ′ K 
d WK ′ K ). (48d) 

Equation 47 is the relative rate of change of the electronic population of state K due to coupling 

to the state K'. Hops away from state K are allowed only if ρKK is decreasing, and eq 47 is 

designed to maintain the populations of trajectories in each electronic state ni according to ρii 

with the fewest number of hops. (The self consistency of ni and ρii is generally not maintained, as 

discussed below.) Equation 47 is called the fewest switches (FS) hopping probability, and this 

scheme is also called molecular dynamics with quantum transitions (MDQT), which can be 

confusing because it is not the only scheme for molecular dynamics with quantum transitions.  

The quantity 

€ 

BK ′ K (t) = bK ′ K ( ′ t )d ′ t 
′ t = 0

t

∫  can be integrated along with the nuclear and 

electronic variables, such that the hopping probability at time t + Δt may be evaluated as 

 

€ 

PK ′ K (t + Δt) =max
BK ′ K (t + Δt) − BK ′ K (t)[ ] /ρKK (t)

0
 
 
 

 . (49) 

Because surface hops are only allowed between time steps, and because hopping and 

nonhopping trajectories diverge from one another, the results of a surface hopping simulation 

must be converged with respect to the available hopping locations. Often, quite small step sizes 

are required when the electronic populations are changing rapidly, whereas larger step sizes 

(ultimately limited by the accuracy of the integration of the nuclear coordinates) may be used 

when propagating through uncoupled regions of potential surface. This situation benefits from 

variable-step-size integrators.  



 21 

It may be difficult to converge the available hopping locations when using efficient 

adaptive-step-size integrators, as the integrator may step through regions where ρKK' changes 

sign. Consider an example where a large step Δt is taken through a region where ρKK is locally 

quadratic and where ρKK(t) = ρKK(t + Δt). The FS hopping probability for this step is 0, whereas 

if two steps of size Δt/2 are taken, the hopping probability will be finite for one of the steps. 

Many variable step size integrators can integrate quadratic functions exactly, and this example is 

of practical concern. A simple modification42 provides a solution. Specifically, if the increasing  

 

€ 

bK ′ K 
+ =max(bK ′ K ,0) (50) 

and decreasing 

 

€ 

bK ′ K 
− =min(bK ′ K ,0) (51) 

parts of 

€ 

bK ′ K  are integrated separately, the integrator is made to take small steps where 

€ 

bK ′ K  

changes sign and where 

€ 

bK ′ K 
+  and 

€ 

bK ′ K 
−  have discontinuous derivatives.  

 As mentioned above, the FS hopping probability attempts to populate the various 

electronic states with trajectories such that the fractions of trajectories in each electronic state ni ≈ 

ρii (with the accuracy limited by the finite number of trajectories that are sampled). This self 

consistency is maintained only when trajectories in the various electronic states do not diverge 

from one another, i.e., when the potential surfaces are degenerate. For real potential energy 

surfaces, trajectories in different electronic states diverge, and self consistency is not preserved, 

although it may be maintained in an ensemble averaged sense, i.e., 

€ 

ni ≈ ρii , where the brackets 

denote an average over the members of the ensemble of trajectories. When classically forbidden 

hops occur, only upward hops can be frustrated, and self consistency cannot be maintained.88,89 

One may distinguish two sources of frustrated hops in trajectory simulations. First, the FS 

algorithm may be incomplete in some way that is causing it to predict finite hopping probabilities 
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where hops should not be allowed. This argument is strengthened by studies showing that 

accurate results may sometimes be obtained when frustrated hops are simply ignored.90 As 

pointed out in the original formulation63 and further developed in later work,28,65-71,91,92 one 

deficiency of the original FS method and other methods based on classical path electronic 

dynamics is that decoherence is not treated. (We will see below that including decoherence may 

reduce the number of frustrated hops by reducing unphysical amplitudes for unoccupied states in 

regions when such states are no longer strongly coupled.) Another possibility is that the FS 

method is correctly predicting energetically forbidden surface hops, but the hops are frustrated 

due to the limitations of classical mechanics. In this picture, a frustrated hop is a quantum 

mechanical attempt to tunnel into a classically forbidden region of an excited electronic state. 

Several improvements to the FS method based on both of the latter two considerations have been 

developed and are discussed in the remainder of this section. 

One suggestion that was made for eliminating frustrated hops is to use modified velocities 

for the integration of the quantum amplitudes.88,92 We do not employ this because comparison to 

accurate quantum dynamics shows89 that it decreases the accuracy as compared to using the 

original unmodified velocities. 

The first improvement to the FS method that we discuss is a simple modification designed 

to incorporate decoherence.71 Prior to the first surface hop, the electronic variables are assumed 

to correctly evolve coherently along the trajectory according to the classical path equations. At a 

surface hop or an attempted surface hop, the system is imagined to split into two wave packets, 

one travelling on each of the surfaces involved in the surface hop. The system immediately 

begins to decohere with a first order rate coefficient 

€ 

τSD
−1  obtained by considering the short time 

evolution of the overlap of two one-dimensional wave packets traveling in the different 

electronic states93 
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€ 

τSD
−1 =

π
2
ΔfK ′ K 

p K ′ K 

+
ΔpK ′ K 

h
 

 
 

 

 
 
2
ΔK ′ K 

M
+

πΔfK ′ K 

2p K ′ K 

 

 
 

 

 
 

2

 (52) 

where  

 

€ 

fK ′ K = −∇n (VK −V ′ K ) ⋅ ˆ h K ′ K  (53) 

is the difference in the forces of the two electronic states in the direction of the hopping vector, 

 

€ 

ΔpK ′ K = (P − ′ P ) ⋅ ˆ h K ′ K  (54) 

is the difference in the nuclear momenta before and after the surface hop in the direction of the 

hopping vector, and 

 

€ 

p K ′ K = 1
2 (P + ′ P ) ⋅ ˆ h K ′ K . (55) 

If the decoherence event is initiated at a frustrated hop, P' cannot be calculated and is set to zero 

in eqs 54 and 55. 

At each time step (of step size Δt) after the frustrated or successful hop, a stochastic 

decoherence (SD) probability is computed  

 

€ 

PSD(Δt) = exp(−Δt /τSD) , (56) 

and PSD is compared to a random number between 0 and 1. If the SD check is successful, the 

electronic state density matrix is reset to 

 

€ 

ρij =
1
0
 
 
 

for i, j =K
otherwise 

, (57) 

where K is the currently occupied electronic state. After reinitialization, the electronic state 

populations evolve according to the coherent classical path equations. If a frustrated or successful 

hop occurs before decoherence is called for, τSD is updated and decoherence checks are 

continued. 



 24 

The SD algorithm damps out coherence after some physically motivated time, which 

reduces the likelihood of the FS algorithm calling for surface hops in regions of weak coupling 

that are encountered between regions of strong coupling. This has the practical and intended 

physical effect of reducing frustrated hops in regions where the potential energy surfaces have 

different energies and/or shapes; decoherence is expected to be fast in such regions.  

 The next improvement to the FS method incorporates time-uncertainty (TU) hopping,24 

which simulates tunneling into classically forbidden regions of excited electronic states. Inspired 

by the time-energy version of the uncertainty principle, a frustrated hop occurring at some time tf 

is allowed to hop at the nearest time th along the trajectory where a hop would be energetically 

allowed (if such a time exists) but only if 

 
  

€ 

t f − th ≤ h / 2Edef  (58) 

where 

 

€ 

Edef = ΔK ′ K (t f ) − TK ′ K (t f )  (59) 

is the energy deficiency by which the attempted hop is frustrated. In this way, a TU hop may be 

thought of as allowing the trajectory to borrow an energy of Edef for some short time according 

to the uncertainty principle as it hops into the excited state. The FS method with TU hops was 

shown to significantly improve the accuracy of the surface hopping method for some systems, 

especially those with weakly coupled electronic surfaces.24 

The FSTU method and the SD algorithm do not eliminate all frustrated hops. The 

remaining frustrated hops (i.e., those where a th satisfying eq 58 cannot be found) are attributed 

to the breakdown of the independent-trajectory approximation and are treated using the “grad V” 

prescription.85 In the method, a frustrated trajectory instantaneously receives an impulse from the 

classically forbidden electronic state based on its gradient in the direction of the hopping vector. 
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Specifically, at a frustrated hop that cannot be remedied by the TU method, the components of 

the nuclear momentum and force in the target electronic state in the direction of 

€ 

ˆ h K ′ K  are 

calculated by 

 

€ 

p ′ K = P ⋅ ˆ h K ′ K  (60) 

 

€ 

f ′ K = −∇nV ′ K ⋅ ˆ h K ′ K  (61a) 

 

€ 

f ′ K = −∇nW ′ K ′ K ⋅ ˆ h K ′ K  . (61d) 

If pK' and fK' have the same sign, the influence of the target electronic state is to accelerate the 

trajectory, and we choose to continue the trajectory in the currently occupied electronic state 

without making any adjustments to the nuclear momenta. If pK' and fK' have different signs, the 

target electronic state is thought to “reflect” the trajectory, and we choose to continue the 

trajectory in the currently occupied electronic state with the nuclear momentum reversed in the 

direction of 

€ 

ˆ h K ′ K , i.e., 

 

€ 

′ ′ P = P − 2 P ⋅ ˆ h K ′ K ˆ h K ′ K . (62) 

 If the probability of an electronically inelastic event is very small because the probability 

of a hop is very small, e.g., 10–6, it would typically require very extensive sampling to observe 

even one inelastic event and even more sampling to accumulate good statistics. For such cases 

special methods of rare-event sampling has been developed.94 

 It is interesting to examine the question of whether surface hopping methods can be 

improved by replacing the trajectories with wave packets. In principle the answer is yes, but so 

far no generally affordable method for doing so has been devised. The most widely employed 

method involving wave packets for photochemical calculations is the full multiple spawning 

(FMS) method.36-39 The assumptions underlying this method have been examined in detail.37 It 

was stated37 that the basis set expansion method underlying FMS “is aimed only at describing 
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quantum mechanical effects associated with electronic nonadiabaticity and not at correcting the 

underlying classical dynamics.” One of many serious approximations in replacing an ensemble of 

trajectories with an ensemble of wave packets is that the wave packets must be coupled. In FMS, 

in order to keep the method practical, interference between the various initial wave packets that 

are required95 to simulate the initial quantum state is neglected; this serious approximation is 

called the independent-first-generation approximation.37 One of the features that makes trajectory 

calculations affordable for complex systems is that an enamble of trajectories can be run 

independently of each other, without introducing approximations to accurate classical mechanics. 

In contrast, running wave packets independently is a serious approximation that is not overcome 

by spawning more packets or spawning them in a more physical way. Furthermore, FMS does 

not include decoherence in the treatment of electronic nonadiabaticity (it uses a unitary treatment 

of the electronic degrees of freedom, not a nonunitary one65 as in the CSDM method discussed in 

the next section). Thus FMS is expected to have about the same accuracy as surface hopping 

without decoherence, which is consistent with our numerical tests.  

 Efforts to derive improved wave packet methods are underway in more than one 

group.40,96 The reader is also referred to the multiconfiguration time-dependent Hartree 

method,43-45 which is a variational time-dependent wave function expansion method designed to 

achieve converged quantum dynamics in an efficient way; it has had outstanding success for 

small enough systems and systems with particularly amenable Hamiltonians. 

 

4. Coherent Switches with Decay of Mixing 

One major deficiency of the FSTU method and of surface hopping methods in general is 

that the results of the NBO simulation may depend strongly on the choice of electronic 

representation, that is, adiabatic, diabatic, or mixed. Here we consider an alternative approach to 
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NBO molecular dynamics based on a mean-field approximation. In its simplest form, the mean-

field approximation under consideration here29-31 is called the semiclassical Ehrenfest or SE 

approximation. It defines the semiclassical potential energy as a weighted average of the 

potential energy surfaces 

 

€ 

V ≡ Φ H0 Φ
= ρiiVii

i
∑  (63a) 

    

€ 

= Re(ρij
d )Wij

i, j
∑ . (63d) 

Note that the gradient of the diabatic mean field energy is straightforward 

 

€ 

∇V = ρij
d∇Wij

i, j
∑ , (64d) 

whereas the gradient of the adiabatic mean field energy is 

 

€ 

∇V = ρii∇Vi
i
∑ + 2 Re(ρij )ViFij

i≠ j
∑ , (64a) 

with the 2nd term on the right hand side arising semiclassically from the action of the nuclear 

gradient on ρij.
97 More rigorous derivations of the equations governing mean-field motion in the 

adiabatic representation equivalent to eq 64a have been given.29 SE trajectories are independent 

of the choice of electronic representation.  

In the SE model, trajectories propagating through regions of coupling are governed by an 

effective potential energy surface that is evolving as an appropriately-weighted average of the 

coupled potential energy surfaces. Although this situation may be an accurate description of 

coupled-states semiclassical motion, a severe deficiency of the approach is that the trajectory 

remains in a coherent mixed state after the system leaves the region of coupling. This causes the 

SE method to predict molecular products to be in coherent superpositions of electronic states, 

which do not correspond to quantum mechanical or experimentally measured final states. 
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Another less obvious but equally troubling consequence of fully coherent SE propagation is that 

the system does not “reset” electronically between regions of coupling, which may introduce 

errors into the dynamics.91,92 Finally, SE trajectories are not able to explore some processes 

occurring with small probabilities, as the potential felt by an SE trajectory will be determined 

mainly by the potential energy surface associated with the higher-probability event. 

The CSDM method28 is a modification of the SE method designed to introduce 

decoherence outside regions of strong coupling, such that the predicted molecular products are 

formed in quantized final electronic states. As mentioned in Sec 2.2, decoherence in the 

electronic equations of motion may be thought of as arising from the nuclear degrees of freedom 

acting as a bath, and the bath relaxes the electronic density matrix. An important feature of 

CSDM trajectories is that they behave similarly to SE trajectories in strong coupling regions, thus 

preserving much of the representation independence of the SE method. 

The decay-of-mixing (DM) formalism collapses a coherent mixed state density matrix to 

a quantized pure state smoothly over time, and includes both dephasing 

 

€ 

ρij → 0  (i ≠ j) (65) 

and demixing 

 

€ 

ρii →δiK , (66) 

where δiK is the Kronecker delta, and K labels the target decoherent state toward which the 

system is collapsing. The target decoherent state label K may change over time, as discussed 

below. When the electronic density matrix collapses to a quantized electronic state, the 

semiclassical potential energy surface (eq 63) collapses to a pure one, thus providing realistic 

product internal energy distributions that may be compared with experimental and quantum 

mechanical ones. 



 29 

Note that dephasing (as it is defined here as the damping of the off-diagonal elements of 

ρij) is a physical effect, whereas demixing is a semiclassical choice. Dephasing and demixing are 

assumed to occur at the same rate 

€ 

τiK
−1, where 

 
  

€ 

τ iK =
h

Δ iK

1+
E0

P ⋅ ˆ s i( )2 /2M

 

 
  

 

 
  , (67) 

where each state i other than K has its own decoherence time τiK, E0 is a parameter typically 

chosen to be 0.1 Eh = 2.72 eV, and 

€ 

ˆ s i is a unit vector called the decoherence vector. The decay 

time in eq 67 has a different functional form than the one used previously for the SD method (eq 

52) due to algorithmic requirements of the DM method. Equations 52 and 67 are expected to 

have similar magnitudes.93 Alternatives to eq 67 have also been explored for CSDM calculations, 

and the results are not overly sensitive to the functional form.98  

Decoherence and demixing are introduced into the NBO molecular dynamics by 

modifying the classical path electronic equations of motion.28,67 

 

€ 

˙ c i
DM = ˙ c i + ˙ c i

D  (68) 

where 

 

€ 

˙ c i
D =

1
2

ci
τiK

 i ≠ K  

       

€ 

=
1
2
cK
ρKK j≠K

∑
ρ jj
τ jK

 i = K (69) 

Equivalently, one may write the decoherence terms for the density matrix, 

 

€ 

˙ ρ ij
DM = ˙ ρ ij + ˙ ρ ij

D (70) 

where 

 

€ 

˙ ρ ii
D = −

ρii
τiK

 i ≠ K 
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€ 

=
ρ jj
τ jKj≠K

∑  i = K (71) 

for the diagonal elements, and 

 

€ 

˙ ρ ij
D = −

1
2

1
τiK

+
1
τ jK

 

 
 

 

 
 ρij  i, j ≠ K 

 

€ 

=
1
2

1
ρKK

ρkk
τkKk≠K

∑ −
1
τ jK

 

 
 

 

 
 ρij  i = K, j ≠ K 

 

€ 

=
1
2

1
ρKK

ρkk
τkKk≠K

∑ −
1
τiK

 

 
 

 

 
 ρij  i ≠ K, j = K (72) 

for the off-diagonal elements. Equations 69, 71, and 72 can be derived by assuming first-order 

decay of the diagonal elements, and enforcing conservation of the electronic density and phase 

angle.67 

 As the system decoheres and demixes, the nuclear momenta are adjusted to conserve total 

energy 

 

€ 

˙ P DM = ˙ P + ˙ P D , (73) 

where it is convenient to write the additional term as  

 

€ 

˙ P D = −
˙ V i
D

P ⋅ˆ s i( ) / M
ˆ s i

i≠K
∑ . (74) 

Equation 74 guarantees that decoherence is turned off as the momentum available in the 

decoherent direction 

€ 

ˆ s i  goes to zero, with 

 

€ 

˙ V i
D =

ρii
τiK

(VK −Vi )  (75a) 

 

€ 

˙ V i
D =

ρii
τiK

WKK −
ρiK
τiK

+
ρiK
ρKK

ρ jj
τ jKj≠K

∑
 

 
 

 

 
 WiK −

1
2

1
τiK

+
1
τ jK

 

 
 

 

 
 ρijWij . (75d) 
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The decoherence vector determines the components of P into and out of which energy is 

exchanged as the system decoheres and demixes, and we choose 

 

€ 

si = P ⋅ ˆ F iKFiK + Pvib( ), (76a) 

 

€ 

si = P ⋅ ˆ F iK
r FiK

r + Pvib( ), (76d) 

where ^ denotes a unit vector (as it always does in this whole chapter), and Pvib is the vibrational 

momentum. In regions of strong coupling 

€ 

si ≈ FiK  or 

€ 

FiK
r , which is a physically reasonable 

choice, and when the coupling vanishes (where nonzero 

€ 

FiK  and 

€ 

FiK
r  are not defined) 

€ 

si ≈ Pvib , 

which is a choice that conserves total angular momentum. The vibrational momentum can be 

calculated for polyatomics as99 

 

€ 

Pvib
α = Pα −Mω ×Qα  (77) 

where 

 

€ 

ω = I−1J , (78) 

I is the intertial tensor matrix, J is the total angular momentum vector, α labels atoms, and 

€ 

Pvib
α , 

Pα, ω , and Qα are three-dimensional vectors. 

 A quantum subsystem coupled to an environment does not actually decay to a pure state 

but rather to a classical, incoherent mixture of states,100 each associated with a probability of 

occurring in an ensemble. To incorporate this into the present model, the decoherent state K is 

allowed to switch stochastically along a DM trajectory according to a fewest-switches criterion. 

In the coherent switches (CS) implementation of DM, equations similar to eqs 47 and 48 are used 

to switch K, with ρij replaced by a locally coherent electronic density matrix

€ 

ρij
CS . The time 

evolution of 

€ 

ρij
CS  is fully coherent, 
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€ 

˙ ρ ij
CS = ˙ ρ ij , (79) 

i.e., it does not include 

€ 

˙ ρ ij
D, and 

€ 

ρij
CS  is made locally coherent by setting 

 

€ 

ρij
CS = ρij

DM  (80) 

when the trajectory experiences a local minimum in  

 

€ 

D(t) = FiK
2

i
∑ . (81) 

An ensemble of CSDM trajectories decays to a distribution of final electronic states, and this 

distribution is determined from the ensemble average, 

€ 

ρii
CS , obtained from the locally coherent 

solutions of the classical path equation. 

 In summary, the CSDM includes the quantum evolution of the electronic degrees of 

freedom as governed by a reduced density operator (density matrix), and it incorporates 

decoherence of the electronic degrees of freedom by the nuclear degrees of freedom. In strong 

interaction regions it is a mean-filed method with the formal and practical advantage (such as 

representation independence) of the Ehrenfest method, but the decoherence mitigates the 

disadvantage of the mean-field approach. We note that the CSDM does not scale in a difficult 

way with system size, and it can easily be applied to large and complex systems.  

 

5. Summary of Recent Tests and Applications  

 The FSTU method (with the SD algorithm and the grad V prescription for treating the 

remaining frustrated hops) and the CSDM method are the results of a long series of systematic 

studies of the NBO dynamics of triatomic and, more recently, polyatomic systems. The FSTU 

and CSDM methods are straightforward to implement, readily applicable to a wide variety of 

NBO molecular dynamics simulations with any number of atoms and any number of electronic 
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states, and are available in the distributed computer code ANT.101 Here we summarize the results 

of the validation studies that led to the improved methods, and we discuss recent applications. 

Before doing this we note that large systems may involve new features so there is no guarantee 

that methods found to be accurate for triatomic and tetraatomic cases are accurate in all cases, 

including large molecules; however, it is clear that methods that fail even for small molecules are 

not to be trusted for large molecules and it would be hard to argue that they should ever be 

preferred. Anyway, as far as test against accurate quantum dynamics for the same sets of 

potential energy surfaces and couplings, small-molecule tests are all we have at this point in time. 

Tests comparing NBO molecular dynamics with experimental results are tests against accurate 

quantum dynamics, but since the exact surfaces and couplings are not known and the extent of 

possible experimental error is often hard to estimate, such tests are not as straightforward to 

interpret as small-molecules tests where accurate quantum dynamics are available for given set of 

surfaces and couplings. 

 The FSTU and CSDM NBO molecular dynamics methods, along with several variants 

and predecessors, were tested against accurate outgoing wave variational principle41,102-104 

quantum mechanical reactive scattering calculations on a series of two-state atom-diatom test 

cases. Full-dimensional test cases with prototypical AC,105 WI,89 and CI7 interactions (as 

illustrated in reduced dimensionality in Fig. 1) were developed for this purpose, each of which 

describes a model reaction of the form 

 

€ 

A*+ BC(v, j)→ AB( ′ E int ) + C
→ A + BC ( ′ ′ E int )

 

€ 

reaction
quenching

 (R1) 

where the asterisk denotes electronic excitation, and the diatom is initially prepared in a 

quantized rovibrational state (v,j).  
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Six observables of the model reactions displayed in R1 were considered: the probability 

of reactive de-excitation (PR), the probability of nonreactive de-excitation or quenching (PQ), the 

total probability of a nonadiabatic event (PN = PR + PQ), the reactive branching fraction FR = 

PR/PN, and the average internal energies of the two diatomic fragments (

€ 

′ E int  and 

€ 

′ ′ E int ). Several 

test cases for each class of prototypical interactions were considered; they vary in the coupling 

strength of the model potential energy surfaces, the initial conditions, and/or the scattering 

conditions. By averaging over several test cases in each class, we obtain more robust and 

predictive error estimates. The results of these studies, which include errors for a total of 6 

observables for each of 17 test cases, are summarized in Table 1.8  

The 17 test cases in Table 1 include three cases of weak interaction (systems like Br* + 

HR → Br + HR or → HBr + R, where R is a radical; these cases are called WI cases or YHR 

cases), eight cases with accessible regions of avoided crossing but no accessible conical 

intersections (these are called AC cases or MXH cases), and five cases of accessible conical 

intersections (these are called CI cases or MCH cases). In each of these 17 cases we obtained 

accurate quantum dynamics results for a given realistic set of potential energy surfaces and 

couplings and compared these to the results of various semiclassical dynamics methods for the 

same potential energy surfaces and couplings and the same initial quantum states. The 17 cases 

differ from one another in the potential energy surfaces, the couplings, and/or the initial quantum 

state (for WI cases, there is one set of surfaces, and we ran the ground vibrational-rotational state 

of the reactants at two energies and one excited rotational state at one energy; for AC cases there 

are three different couplings surfaces—strong and broadly distributed, strong and localized, and 

weak and localized, and each was run for three initial rotational states; for CI cases there are five 

different sets of couplings). The accurate dynamics are independent of representation (adiabatic 

or diabatic), but the semiclassical results depend on the representation in which the dynamics are 
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calculated; for each case and each representation we calculated the unsigned percentage error in 

each of the six physical observables mentioned in the previous paragraph by comparing the 

semiclassical results to the accurate quantum dynamics ones. Each column in the table shows 

mean unsigned percentage error averaged over the six observables in each of two representations 

for the cases in that column. The last column contains all 17 cases and so the mean unsigned 

percentage errors in the last column are averaged over 6 x 2 x 17 = 204 absolute percentage 

errors. 

The table shows that the results of the NBO molecular dynamics simulations are in 

general strongly dependent on the choice of electronic representation, and it shows that the 

adiabatic representation is usually more accurate than the diabatic one. The SE method is 

formally independent of the choice of representation, but it is less accurate than the other 

methods. Furthermore, it is unable to treat the small probability events occurring in the WI 

systems.8  

The adiabatic representation is not always to be preferred, and the diabatic representation 

was found to be more accurate for some of the systems in the test set with ACs and CIs. A useful 

criterion for choosing between the adiabatic and diabatic representations is to prefer the 

representation where the diagonal surfaces are the least coupled to one another. One way to do 

this is to prefer the representation with the fewest number of attempted surface hops, and this 

representation is called the Calaveras County (CC) representation.106 Results obtained using the 

CC representation are shown in Table 1. The CC is generally more accurate than using either the 

adiabatic or diabatic representations exclusively.  

For larger systems than the ones considered here, it is likely that trajectories may sample 

some regions where the adiabatic representation is preferred and others where the diabatic 

representation is preferred in a single simulation. Invariance to the choice of electronic 
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representation is therefore desirable, and it is encouraging that the CSDM method, which was 

designed with representation independence as a goal, is systematically less representation 

dependent than the FSTU and other NBO molecular dynamics methods. 

 The overall accuracy of the best representations for each type of improved NBO method 

is generally good, and the CSDM method is the best method overall with an error of only ~25%. 

Clearly the improvements made to the surface hopping approach and to the mean field approach 

have produced systematically improved methods of each type. Finally, we note that the improved 

methods work nearly equally well for the three types of interactions considered. Again, this 

robustness is important, as real systems are likely to feature more than one kind of interaction. 

Not only does the CSDM provide reasonably accurate final states, but—because of the explicit 

inclusion of decoherence with a physical time scale—it is expected to provide a realistic picture 

of the real-time process; the ability of semiclassical methods including decoherence to do this is 

expected to become more and more useful as shorter time scales107,108 for studying the electron 

dynamics in molecules become accessible. 

 In another test, the accuracy of NBO MD methods for simulating deep quantum systems 

(i.e., systems with large electronic state energy gaps) was considered.71 Typical energy gaps in 

the model AC and WI test cases are only a few tenths of an eV, whereas many real systems have 

much larger gaps. Quantum mechanical calculations of the photodissociation of the Na...FH van 

der Waals complex with a gap of ~1.5 eV were carried out.109 In the ground state, thermal 

excitation tends to break the weak van der Waals bond, producing the Na and HF products 

exclusively. Upon electronic excitation with visible light, however, the complex is promoted to a 

metastable complex called an exciplex. The exciplex is proposed to exhibit enhanced reactivity 

via the harpooning mechanism, where the change in the electronic structure results in a donation 
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of partial charge from the Na atom to the F atom and promotes formation of the NaF + H 

products.  

The FSTU and CSDM methods were shown to fairly accurately predict product branching 

and exciplex lifetimes for the photodissociation of the Na…FH system, as shown in Table 2, thus 

validating their use for deep quantum systems. The NBO classical and quantum dynamics 

simulations confirmed the enhanced reactivity of the harpooning mechanism, and NaF + H was 

predicted to be the dominant photodissociated bimolecular product. 

In the course of this study, product branching in the NBO molecular dynamics 

simulations was found to be affected by a region of coupling where the excited state is classically 

energetically forbidden. An analysis of the NBO MD trajectories revealed that the results are 

sensitive to the treatment of decoherence. Figure 2 shows contour plots of the excited and ground 

electronic states, as well as hopping information for a subset of trajectories. The initial downward 

hops occur for a wide range of accessible geometries of the exciplex. More than three-fourths of 

the trajectories attempted to hop back into the exciplex after their first hop down, but many did so 

at geometries where the excited state is energetically forbidden. The majority of these frustrated 

hops occur near the line of avoided crossings, a region where the two electronic surfaces have 

very different shapes and where decoherence due to wave packet divergence may be expected to 

be significant. The use of the SD model for decoherence was found to reduce errors associated 

with frustrated hopping and to predict product branching and lifetimes in near quantitative 

agreement with the quantum mechanical results, as shown in Table 2. An analogous modification 

of the DM method resulting in faster decoherence in this critical region (obtained by decreasing 

the parameter E0) was shown to give similarly improved results. This study highlighted the 

importance of accurate treatments of electronic decoherence in trajectory-based simulations of 

systems with coupled electronic states. 
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 In another study,62 the nonadiabatic photodissociation of HBr was modeled using several 

NBO trajectory methods. The calculated branching fractions for the H + Br(2P3/2) and H + 

Br(2P1/2) products were found to be in good agreement with experimental measurements110 over 

a range of photon energies, as shown in Fig. 3. 

 Li et al. applied the CSDM method to several systems: the D + H2 and H + D2 reactions 

at collision energies up to 2 eV,111 nonreactive and reactive charge transfer and reactive non-

charge-transfer in D+ + H2 and H+ + D2 collisions,111 and intersystem crossing in O(3P2,1,0, 1D2) 

+ H2 reactive collisions yielding 

€ 

OH 2Π3/2,1/2( ) +H 2S( ) .112 For the first two reactions they 

employed a two-state electronic basis, for the next two a three-state electronic basis, and for the 

final two a four-state electronic basis (3 triplet states and one singlet). For D + H2 and H + D2 

they obtained very good agreement of reactive cross sections with accurate quantal dynamics 

over the whole range. For nonreactive and reactive charge transfer in D+ + H2 and H+ + D2, the 

CSDM cross sections provide overall trends in good agreement with accurate quantum dynamics, 

and for reactive non-charge-transfer the CSDM cross sections agree with accurate quantum 

dynamical ones over the whole energy range up to 2.5 eV, although in one case they are slightly 

lower. For 

€ 

O 3P2( ) +H2, the cross sections to produce the 

€ 

2Π3/2  and 

€ 

2Π1/2  states are both in 

good agreement with accurate quantum dynamics over the whole range of collision energies, up 

to 28 kcal/mol, except that the cross section to produce the 

€ 

2Π3/2  state has a somewhat higher 

threshold. 

 The photodissociation of NH3, which has been studied in detail experimentally,113,114 was 

also recently modeled using NBO MD simulations.80,85 Analytic representations115 of the coupled 

X and A states of NH3 are shown in Fig. 4 as functions of one N–H distance and the umbrella 
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angle θ. This system features a CI at extended N–H distances and planar geometries. Trends in 

the production of excited state amino radicals as a function of initial state preparation were 

computed and compared with experiment. The experimental results suggest an enhancement in 

the production of excited-state products when the antisymmetric stretch of NH3 is excited, with 

the interpretation that excitation of the antisymmetric stretch causes the system to go around the 

CI and thus inhibits electronic state quenching. The NBO MD calculations predict that the 

production of excited state amino radicals depends on the total energy, and no state specificity is 

observed. The source of this discrepancy is unclear, although recent quantum mechanical wave 

packet results116 are in fair agreement with the NBO trajectory results. 

In addition to making semiquantitative predictions of product branching, lifetimes, and 

internal energy distributions, as discussed above, NBO molecular dynamics simulations are 

useful for studying chemical events in mechanistic detail, such as the role of conical intersections 

and avoided crossings in NBO dynamics. This analysis has been carried out for the FSTU and 

CSDM methods for the model CI and AC test cases,7 Na…FH photodissociation,71 and for the 

photodissociation of NH3.80,85 

 From these studies, one can make some general comments about NBO trajectories and 

CIs. The capture efficiencies of a CI and an AC have been compared for similar potential energy 

surfaces, differing only in the interaction type. Trajectories with reasonable kinetic energies were 

found to be captured equally well by the CI and AC, i.e., the conical shape near the CI did not 

capture trajectories any more or less easily than an AC. The CI was shown to more efficiently 

move trajectories out of the interaction region than the AC, although the effect was small. 

Finally, it was noted that trajectories did not in general switch surfaces at zero-gap geometries. 

Instead, surface hops occurred over a range of energy gaps, geometries, and coupling strengths 

near and at the CI.  
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 A similar analysis of the NH3 trajectories was carried out to study the experimentally 

proposed mechanism of state specificity. The NBO MD trajectory results showed that the system 

is efficiently quenched via the seam of CIs when either the antisymmetric or symmetric stretches 

are excited. The distribution of energy gaps at surface hops was peaked at zero, but the average 

gap was 0.3 eV. The CI rapidly quenched photoexcited NH3 nonreactively to form NH3, which 

subsequently and much more slowly decayed to NH2 + H. Only a small fraction of trajectories 

dissociated directly to the NH2 + H products. Furthermore, the number of direct trajectories 

avoiding the CI was not promoted by excitation into the antisymmetric stretch, in contrast to the 

experimentally proposed mechanism.  

 

6. Concluding Remarks 

Non-Born-Oppenheimer dynamics may be dominated by regions of conical intersections, 

by regions of avoided crossings, or by regions of weak interactions of electronic states. When a 

conical intersection seam or its neighborhood is dynamically accessible, the geometries in the 

neighborhood of the conical intersections seam will often provide an efficient route for excited 

state decay, as originally pointed out by Teller.9 As mentioned in the introduction and as 

indicated by analyses of non-Born-Oppenheimer trajectories in section 5, the seam of conical 

intersections—due to its dimensionality being two lower than the dimensionality of the full 

internal coordinate space—does not necessarily directly mediate electronic transitions; however, 

the conical intersection seam does anchor the loci of strong interaction of the potential energy 

surfaces. Because the conical intersection seam can be a very extended hypersurface, one must 

consider more than just the lowest-energy conical intersection, and because the conical 

intersection itself may be dynamically inaccessible one must consider avoided crossings as well 

as conical intersections. Because conical intersections are surrounded by avoided crossing seams, 
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it is important to consider the multidimensional character of the dynamics whenever a region of 

strong interaction of the electronic states is encountered; treatments based on treating the 

potentials along a trajectory path as one-dimensional avoided crossings ignore the fact that strong 

interaction regions in polyatomic systems have more complicated dynamics than the Landau-

Zener behavior encountered in atom-atom collisions. The best zero-order model of the dynamics 

in a strong interaction region may be either diabatic or adiabatic. Furthermore, one must take 

account of the fact that decoherence may occur between successive visits to strong interaction 

regions. The semiclassical dynamics methods reviewed in this chapter take account of this 

decoherence, they have been validated in multidimensional studies for the treatment of 

photochemical dynamics in the vicinity of conical intersections and avoided crossing regions and 

also in weak interaction regions, they may be used for systems containing both predominantly 

diabatic and predominantly adiabatic regions of phase space, and rare-event sampling algorithms 

are available for treating processes with small transition probabilities. The CSDM method, in 

particular, arose the culmination of a series of attempts to improve mean-field and surface 

hopping methods by combining the best features of both. 
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Table 1. Highly-averaged percentage errors for several NBO methods 

Method Representation AC WI CI overall 
FSa A 53 29 53 45 
 D 42 289 43 125 
 CC 53 29 40 41 
SE A/D/CC 74 c 66 c 
FSTUb A 43 25 56 41 
 D 27 128 42 66 
 CC 38 25 39 34 
CSDM A 20 18 42 27 
 D 19 22 33 25 
 CC 21 18 33 24 
aFrustrated hops were ignored. 
bFrustrated hops were treated using the TU and grad V prescriptions. The SD algorithm was not 
used because it had not been developed yet at the time that these calculations were carried out. 

cThe SE method fails for weakly coupled systems in that it does not produce all possible 
products; therefore average internal energies cannot be computed for the missing products, and 
an overall error cannot be computed. 
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Table 2. Product branching probabilities and half lives of the Na...FH exciplex 

Method PNa+HF PNaF+H t½, ps 
Quantum 0.04 0.96 0.42 
FSTU without SD 0.16 0.83 0.85 
FSTU with SD 0.05 0.95 0.52 
CSDM (E0 = 0.1 Eh) 0.29 0.71 0.76 
CSDM (E0 = 0.001 Eh) 0.06 0.94 0.40 
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Figure Captions 

Fig. 1.  Examples of the adiabatic (solid) and diabatic (dashed) potential energy surfaces along 

(left-to-right) the ground state reaction coordinate for the AC, WI, and CI families of test 

cases. 

Fig. 2. Contour plots of the ground (dashed) and first excited (solid) potential energy surfaces for 

Na...FH. The initial hops down are shown as open triangles. Subsequent successful hops 

up are shown as solid triangles, and frustrated hops up are shown as black dots. The thick 

black line is the line of avoided crossings. 

Fig. 3. HBr photodissociation branching fraction to form H + Br* as a function of photon energy 

(hυ) obtained by the CSDM method (solid line) and experiment (diamonds). 

Fig. 4.  A conical intersection between the ground and first excited states of NH3 occurs at planar 

geometries and at an N–H distance of 2 Å. 
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Figure 1 

 

Fig. 1.  Examples of the adiabatic (solid) and diabatic (dashed) potential energy surfaces along 

(left-to-right) the ground state reaction coordinate for the AC, CI, and WI families of test 

cases. 
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Figure 2 

 
 
Fig. 2. Contour plots of the ground (dashed) and first excited (solid) potential energy surfaces for 

Na...FH. The initial hops down are shown as open triangles. Subsequent successful hops 

up are shown as solid triangles, and frustrated hops up are shown as black dots. The thick 

black line is the line of avoided crossings. 
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Figure 3 

 

Fig. 3. HBr photodissociation branching fraction to form H + Br* as a function of photon energy 
(hυ) obtained by the CSDM method (solid line) and experiment (diamonds).
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Figure 4 
  

 
 
Fig. 4. A conical intersection between the ground and first excited states of NH3 occurs at planar 

geometries and at an N–H distance of 2 Å. 
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